
NASA-CR-201_89

/
/

DEPEND: A Simulation-Based Environment for System Level
Dependability Analysis

Kumar K. Goswami Ravishankar K. Iyer Luke Young

Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801

Abstract

The paper presents the rationale for a functional simulation tool, called DEPEND,

which provides an integrated design and fault injection environment for system level

dependability analysis. The paper discusses the issues and problems of developing such

a tool, and describes how DEPEND tackles them. Techniques developed to simulate

realistic fault scenarios, reduce simulation time explosion, and handle the large fault

model and component domain associated with system level analysis are presented. Ex-

amples are used to motivate and illustrate the benefits of this tool. To further illustrate

its capabilities, DEPEND is used to simulate the Unix-based Tandem triple-modular-

redundancy (TMR) based prototype fault-tolerant system and evaluate how well it

handles near-coincident errors caused by correlated and latent faults. Issues such as

memory scrubbing, re-integration policies and workload dependent repair times which

affect how the system handles near-coincident errors are also evaluated. Unlike any

other simulation-based dependability studies, the accuracy of the simulation model

is validated by comparing the results of the simulations with measurements obtained

from fault injection experiments conducted on a production Tandem machine.

Keywords:

Simulation, fault injection, dependability analysis, correlated errors, latent errors,

inter-component dependence, object-oriented design, Tandem TMR-based prototype

analysis, validation.

• Kumar K. Goswami was with the Center for Reliable and High-Performance Computing and is now with Tandem

Computers, Cupertino, CA 95014-2599. E-mail: kumar_loc3.tandem.com.

• Ravishankar K. Iyer is with the Center for Reliable and High-Performance Computing at the University of Illinois,

Urbana, IL 61801. E-mail: iyer_crhc.uiuc.edu.

• Luke Young was with the Center for Reliable and High-Performance Computing and is now with Tandem Computers,

Austin, TX 78728. E-mail: luke_mpd.tandem.com.

This work was supported by the National Aeronautics and Space Administration under grant NAG-I-613, in cooper-

ation with the Illinois Computer Laboratory for Aerospace Systems and Software (ICLASS), by a NASA Graduate

Student Researchers Fellowship, and by the Advanced Research Projects Agency under grant DABT63-94-C-0045.

The findings, opinions, and recommendations expressed herein are those of the authors and do not necessarily reflect

the position or policy of the United States Government and no official endorsement should be inferred.

1 Introduction

The growth in the demand for dependable systems and their increasing complexity has created
a need for automated design and analysis tools. The design life cycle of a system can be viewed

as consisting of three stages. In the first stage, the hardware and software architecture are not
established and detailed information about them is not available. Continuous time Markov chains

(CTMC) and tools that solve CTMC models are ideally suited for this early stage to conduct high-

level dependability (availability, reliability and fault tolerance) trade-off analysis and establish the

core system architecture. As the design progresses and more information is made available, detailed

evaluation of the system under realistic workload and failure conditions is necessary. Functional

simulation tools are better suited at this stage because they can accurately model the functional

behavior of the system, the inter-component dependencies, workload patterns and specific repair

and reconfiguration schemes. Once a prototype system exists , actual fault-injection can be per-

formed to determine whether it meets its dependability specifications. There has been substantial

research and development of analytical tools used during the first stages of a design. In [12], the

authors describe and compare several tools that solve CTMC models. There is increasing work in

software and hardware fault injection of prototype systems [1, 3, 18, 27, 28, 40, 45, 47]. The focus

of this paper is on the second stage, and in particular on the use of functional simulation-based

tools for system level dependability analysis.

One can ask, given the large number of analytical tools, what is the need for functional simu-

lation tools for system level dependability analysis? What additional information and capabilities

can they provide over analytical tools and fault-injection environments? This paper motivates the

need for functional simulation tools, and in particular integrated design and fault injection tools,

for system level dependability analysis. It discusses the issues and problems of developing such

tools and describes how they are tackled by a tool called DEPEND. Techniques developed to sim-

ulate realistic fault scenarios, reduce simulation time explosion, and handle the large fault model

and component domain associated with system level analysis are presented. Examples are used to
demonstrate the benefits and uses of the tool. Finally, some of the capabilities and the features

of DEPEND are illustrated with a fault injection study of the Tandem system--a TMR-based,

fault-tolerant computer. It is well established that this system is very effective against single faults

[25, 47]. An important question is how such systems cope with near-coincident errors generally

caused by correlated failures and latent faults. Architectural issues that have a bearing on how

the system handles near-coincident faults include memory scrubbing, re-integration policies and

workload dependent repair times. To study these issues, DEPEND was used to simulate the target

system and evaluate the combined effect of all these factors. This comprehensive study demon-

strates the capabilities of DEPEND in a realistic setting. The simulation of the Tandem system

is validated by comparing the results of the simulations with measurements obtained from fault

injection experiments conducted on a prototype Tandem TMR machine. To our knowledge, no

other simulation-based dependability study has been validated in such a fashion.

2 Existing Simulation Tools

There is a lack of simulation tools for system level dependability analysis. Most simulation tools are

designed to facilitate performance analysis (CSIM [39], ASPOL [31], SES Workbench [41], RESQ

[38]). VHDL [22] is a powerful hardware specification !anguage but it does not contain built-in

facilities to support dependability analysis. NEST [11] is a functional simulation and proto-typing

tool used explicitly to analyze distributed networks and system protocols. It is very specialized
and has a limited set of facilities to fail links and nodes. Another functional simulation tool called

REACT [8] is specifically designed for analyzing alternative TMR architectures. UltraSAN [37] and

the Rainbow Net [26] are Petri-net tools. A extended petri-net structure is used to input a model

and solve it via simulation. Though the Petri-net tools have greater applicability than analytical

tools, they are not as versatile as functional simulation tools. They provide only a limited set of

fault models and provide no mechanism to reduce simulation time explosion.

3 System Level Functional Simulation Tool

The main advantage of functional simulation is that it can model the behavior of hardware and

software architectures with greater accuracy. However, there are at least four issues that impede the

development of general-purpose, functional simulation tools for system level dependability analysis.

The first is a lack of well established system fault models. This is partly due to a second issue

which is a large and varied component domain. At the gate level, the basic components are gates

with single functions and well defined ifiterconnections. At this level, it is possible to establish a

fault model such as the single stuck-at fault model that can consistently be applied to all gates to

model their fault behavior. At the system level, the basic components include CPUs, communica-

tion channels, disks, software systems and memory. The components have complex inputs, perform

multiple functions, have varied physical attributes (e.g. hardware and software) and complex in-
terconnections. This makes it difficult to establish a single fault model that can be consistently

applied to all components. Limiting the types of components or fault models represented is one

solution but it restricts the tool's applicability. In addition to the diversity of the components that

comprise a system, two similar components (such as two CPUs) can have different functions and
behavior. The third issue is simulation time explosion which occurs when extremely small failure

probabilities require large simulation runs to obtain statistically significant results. Finally, the

fourth issue relates to simulating large complex systems and the design time required to develop

and debug a functional simulation model. A general-purpose simulation-based system level depend-

ability analysis tool must effectively handle the large component and fault model domain, furnish

ways to accelerate the simulation and provide an environment that facilitates the development of

appropriate simulation models.

DEPEND exploits the properties of the object-oriented paradigm and provides acceleration

techniques to tackle these issues. The first two are solved with the combined use of two crite-

ria: modular decomposition and modular composability [33]. Modular decomposition consists of

breaking down a problem into small elements whereas modular composition favors production of

elements that can be freely combined with each other to provide new functionality. If, for instance,

the fault injection process is divided into two elements: an element that determines when to inject

andinterrupt thesystem,andanelementthat determinestheresponseto a fault (thefault model),
thetwocriteriaaremet. Thefirst object1iscommonto all fault injectionmethods.It encapsulates
thevariousmechanismsusedto determinethearrival timeof a fault andinterrupt the system.The
secondobject is the fault modeland is specificto the componentbeing injectedand the type of
fault injection study. The two arecombinedvia functioncalls. Thusby specifyingdifferent fault
modelobjects,oneinjectorobjectcanbeusedfor all typesof fault injections.Keyobjectssuchas
the injector object, aredesignedto beparameterized.That is, the usercanspecifyvariousfault
arrivaldistributionsor tracefiles.This sameapproachisusedto modelcomponentsthat aresimilar
but not identical;commonaspectsareencapsulatedin anobject whichthen invokesotherobjects
to providemorespecificfunctionality. Furthermore,becauseuserscanspecifyspecificbehaviors
(e.g. their ownfault modelobjects)the tool is not limited to anypre-definedset of fault models
or componenttypes.

A library of objectsthat providethe skeletalfoundationnecessaryto modelan architecture
andconductsimulatedfault-injectionexperimentsisprovidedto reducethedevelopmenttime and
effort neededto build simulationmodels.In additionto decomposition,compositionandparame-
terization, the conceptof inheritance[33]makesit possibleto providea library with a minimum
setof objectsthat canbe readilyspecializedto modela widegamutof differentarchitecturesand
fault injectionexperiments.With inheritance,userscaninherit thepropertiesof anexistingobject
and developmorespecializedobjectswith minimumeffort.

The accelerationtechniquesto speed-upsimulationarepresentedin the next sectionwhich
describesthe DEPEND environmentin detail. The object-orientedparadigmalsofacilitatesthe
implementationand automationof theaccelerationtechniques.

4 The DEPEND Environment

DEPEND is an integrated design and fault injection environment. It provides facilities to rapidly

model fault-tolerant architetures and conduct extensive fault injection studies. It is a functional,

process-based [29, 39] simulation tool. The system behavior is described by a collection of processes
that interact with one another. A process-based approach was selected for several reasons. It is

an effective way to model system behavior, repair schemes, and system software in detail. It

facilitates modeling of inter-component dependencies, especially when the system is large and the

dependencies are complex, and it allows actual programs to be executed within the simulation

environment.

The steps required to develop and execute a model are shown in figure 1. The user writes a

control program in C++ using the objects in the DEPEND library. The program is then compiled

and linked with the DEPEND objects and the run-time environment. The model is executed

in the simulated parallel run-time environment. Here, the assortment of objects including the

fault injectors, CPUs and communication links execute simultaneously to simulate the functional
behavior of the architecture. Faults are injected and repairs are initiated, according to the user's

specifications and a report containing the essential statistics of the simulation is produced.
_In object-oriented programming, the 'elements' axe classes. An object is an instance of a class, but here, for

simplicity, they will be referred to simply as objects.

Control Program : / Depend /
written by user in object
C++ library

[Compile and link J.

Printed
Report

Figure 1: Steps in developing and simulating a model with DEPEND.

Name

Active_elem

Injector

Checksum

Fault Reporter

Voter

Server

Link

NMR

Fault Manager

Type

Elementary

Elementary

Elementary

Elementary

Elementary

Complex

Complex

Complex

Complex

Description
Simulates basic server.

Offers usage disciplines: first come

first serve, round robin, etc.

Allows manual [ault injection & repair.

Injects faults using distributions &

trace files. Offers workload based injections.

Injects correlated faults.

Compute checksums.

Compiles fault statistics. Displays

MTBF, MTBR, availability and coverage.

Provides details of every fault

injected and repair attempted.

Simulates a basic voter with timeout.

Default voting scheme: byte by byte comparison.

Allows user defined voting algorithms.

Inherits Active_elem. Simulates server with spares.

Three sparing policies: no spare,

graceful degradation, stand-by sparing.

Automatic repair and reconfiguration.

Automatic injection of faults.

Simulates communication channels. Inherits Server.

Several fault types: link dead,

packet corruption, packet loss and

user defined faults. Automatic retry.

Simulates dual self-checking,

triple-modular redundant and N-modular

redundant components.

Simulates software fault management

schemes. Logs faults and shuts off

components which exceed their fault threshold.

Table 1: Some objects in the DEPEND library.

4.1 The DEPEND Object Library

DEPEND is a library of elementary and complex objects. Elementary objects provide basic func-

tions like injecting faults and compiling statistics. Complex objects created from several elementary

objects, simulate fundamental components found in most fault-tolerant architectures such as CPUs,
self-checking processors, N-modular redundant processors, communication links, voters and mem-

ory. These few key objects can be combined and replicated to simulate a wide range of fault-tolerant

architectures. All objects are designed with four criteria. The objects:

1. simulate the general behavior of a component (decomposability & composability),

2. connect with other objects via function calls (composability),

3. allow users to specify key parameters (parameterization), and

4. provide default functions to minimize design time.

Table 1 lists key objects in the library. A detailed description of all objects can be found in [16].

4.2 DEPEND Fault Models and Injection Facilities

4.2.1 Fault models

DEPEND uses functional fault models to simulate the system level manifestation of gate-level faults

such as stuck-at faults. Functional fault models are used because they are best suited for system

level fault injection where the focus is on the behavior of a component. Default fault routines

are provided for each object to minimize user design time. The default CPU fault model assumes

that the processor hangs when a fault is discovered. If the fault is transient, it disappears when

the CPU is restarted. If the fault is permanent, it is corrected only when the CPU is replaced.

This fault model represents the functional behavior of low-level, stuck-at faults and transient errors

in key CPU registers and functional units. The default fault model for a communication medium

simulates the effects of a noisy communication channel by corrupting bits in a message or destroying

the message. Two default fault models are available for memory and I/O subsystems. Either a

bit of a word is flipped or a flag is raised to represent the error. The error can be detected with a

• byte-by-byte comparison or by checksum comparison if the error is a flipped bit. Otherwise, it can

be detected by checking the status of the flag.

4.2.2 Fault injector

The fault injector is a fundamental object of DEPEND. It encapsulates the mechanism for injecting

faults. To use the injector, a user specifies the number of components, the time to fault distribution

for each component, and the fault subroutine which specifies the fault model. The distributions sup-

ported are constant time (mostly used for debugging), exponential, hyperexponential and Weibull.

The object also allows user specified distributions. When initialized, the injector samples from a

random number generator to determine the earliest time to fault, sleeps until that time and calls
the fault subroutine.

Initially, the injectorusedconditionalfailuredistributionsto determinethe time to next fault,
assuminga set of componentshaveindependent,identicallydistributed failure distributions. For
instance,for a systemwith two componentsusinga gracefullydegradingsparingpolicy, the time
to failure of the secondcomponent,X, given that the first component failed at time t is given

by Pr[X < xmX > t]. For a Weibull time to fault distribution with rate parameter A and shape

parameter c_, the conditional distribution is:

Pr[X < xlX > t] = 1 - exp A[(x+t)_-t_] (1)

This approach has several drawbacks. For non-exponential distributions, the conditional distribu-

tions become complex and cumbersome as repaired components are re-integrated into the system

or cold spares are activated. The conditional distributions depend on the sparing policy. As a

result, additional information regarding sparing policies has to be specified. The routines used to

generate random samples are more compute bound. Generating a random sample using the in-

verse transform method for equation 1 requires and additional subtraction and an extra call to the

math library's power() function than for a Weibull distribution. For large simulation runs, where

thousands of faults are injected, the time spent on these additional calls becomes significant.

The current version of the injector uses a table-based approach. An entry is kept for each

component, specifying its condition (OK, Failed), injection status (Injection off, Injection on), time

to fault distribution, and time to next fault. The algorithm used to determine which component

to inject is:

Initialize (performed one time)

do for all components

if (component is OK & On)

compute and store time to fault

else

time to fault is oo

end if

end do

Main body

do forever

find minimum_time_to_fault among components

sleep (minimum_time_to_fault - current_time)

if (sleep not aborted)

call fault subroutine

set time to fault of this component to oo

end if

end do

Any time a component is repaired or turned on, its time to fault is computed and entered in the

table. The injector is then awakened so that it takes the new component's fault time into account.

The table-based approach is versatile. The time to fault distributions of the components do not

have to be identical and any user specified distribution can be supported. For example, the full

"bathtub" reliability curve can be model with DEPEND. The table-based approach automatically

takes the age of each component into account without using conditional probability distributions

and averts the problem with modeling local and global times found in most analytical tools [44].

DEPEND providesa workloaddependentinjectionfacility to model the workload/failurede-
pendencyobservedin [24,4]. It canbeusedto test systemsunderstressconditions•To implement
a workloaddependentinjectionstrategy,a statisticalclusteringalgorithm is first usedto identify
high-densityregionsof the workload.Theseregions(or states)areusedto specifyastatetransition
diagramthat characterizesthe workload[20]•Associatedwith eachstateis a visit counterwhich
countsthe numberof visits to that state and a fault rate,)_, which the system experiences in

that state• The user provides a workload function which the injector polls periodically to identify

the workload state and to update its visit counter. For example, the workload function may be

the utilization of a processor or it may be any other function that provides a measure between 0

(low workload) and 1 (high workload)• Based on an injection_interval specified by the user, the
information from the state transition diagram is used to estimate a weighted average failure arrival

rate (Wgt_lambda) as follows:

N

Wgt_lambda = E visit_ratioi × _
i=1

where:

N is the number of states

counter for statej

visit_ratio, = total visits to all states

Once Wgt_lambda is determined, it is used to compute the probability of a failure injection

(P_inject(t)) over the last interval t (= injection_intervaO as follows:

P_inject(t) = 1 - e -Wgt-lambda×t

The fault injector illustrates what we mean by "providing a simulation framework"• The injector

provides the basic algorithms and mechanisms needed to inject faults allowing the user to concen-

trate on the application specific aspects, the fault model and the simulation of a fault. Furthermore,

the modular, object-oriented approach allows the user to easily experiment with different time to

fault distributions, fault models and workload functions• Other DEPEND objects axe similarly de-

signed to provide the functionality that are commonly needed without restricting the applicability

of the object.

4.3 Simulation Time Acceleration

A drawback with simulation is that it can be execution time bound. DEPEND provides three ways

to reduce simulation time explosion. The main technique is the use of hierarchical simulation. The

foundation of the approach is based on the notion of variable aggregation and decomposability [9].

With this technique, a large complex model is broken down into simpler submodels. The submodels

are analyzed individually and their results are combined to derive the solution of the entire system.

So long as the interactions among the subsystems are weak, this approach provides valid results.

The approach is ideally suited for dependability studies because the models can be broken into two

I Error

Handlin

MStatlstieal l

odel

Figure 2: Hierarchical simulation within a submodel and between submodels.

submodels, a fault occurrence submodel and an error handling submodel, whose interactions are

typically weak. Decomposition is used in HARP [2] to reduce state space explosion and solve stiff

models. We adapt this approach for functional simulation and use it in two ways (figure 2). First,

we take advantage of the cause and effect relationship between the failure occurrence submodel and

the repair submodel to pre-sim!alate the failure occurrence submodel to extract a statistical model

that captures its behavior and then use it to drive the repair submodel. An example of a statistical

model is the failure distribution of the components of the system. Empirical tests show that the

approach provides accurate results and has reduced execution times for the Tandem simulation,

in cases, from 6 hours to just a few minutes [15]. Second, we use this approach to accelerate the

simulation within each submodel. For instance, though DEPEND can execute actual software,

the time to execute a naive simulation, where periods of several years must be simulated, can be

prohibitive. Hierarchical simulation is used to first execute the software under faults to extract
a statistical model such as the error detection latency of the software. The statistical model

represents the behavior of the software under faults and is used with simulation models at a higher

level of abstraction. This hierarchical process cart be used repeatedly. The object-oriented paradigm

facilitates the implementation of hierarchical simulation. Each submodel is an object with clearly

defined inputs and outputs that connect to DEPEND objects that collect statistical models from

one object and used them to drive others.

time

Error n jump Error n+l

,._r/ X-r-/
Simulate in Simulate in

nanoseconds nanoseconds

Figure 3: Time acceleration: "Error-driven" simulation.

Another technique,providedby DEPENDto speed-upsimulationruns, is a generaltime ac-
celerationmechanismwhichallowsthe simulationto leapforwardin time (figure3). DEPEND
objectsfurnishthe timeof the next important event,suchasthetime whenthe next fault will ar-
rive,or whenthe next latent fault will beactivated.A list of theseeventsthat affectdependability
measuresarekept in a chronologicallysortedlist. The simulatorleapsforwardto the time of the
eventat the headof the list and resumesprocessingat the granularityof the systemclockuntil
theeffectof theeventhassubsided.This is differentfrom regularevent-drivensimulationbecause
it allowsuser-specified"unimportant" eventsto besuspendedduring leapswhileotherscontinue.
This accelerationtechniqueis usedwith the Tandemsimulationdescribedin section6.2.

Finally,DEPEND'sC++, process-basedenvironmentfacilitatesthe implementationof variance
reductiontechniques[30].Unlikeothersimulationtools, it providesdirectcontrolof thesimulation
enginesothat importancesamplingtechniquescan be efficientlyimplemented.See[35]on the
difficultiesofimplementingsuchschemesif suchcontrolisnotprovided.Wechosenot to incorporate
anyparticular importancesamplingtechniquein DEPENDbecausetheir useandthemeasuresthey
canprovideareapplicationdependent.

5 Benefits of DEPEND

This section illustrates the uses of DEPEND and the need for its integrated design and fault

injection environment during the second stage of the design process.

5.1 Behavioral Modeling

Analytical and Petri-net tools use stochastic models to represent the behavior of a system. In

essence, the effect of a fault on the system is pre-defined by a set of probabilities and distributions.

DEPEND uses stochastic modeling, but it also permits behavioral modeling which does not require

that the effect of the faults be pre-defined. An example that demonstrates this capability of DE-

PEND is a study in which a distributed system using a centralized, prediction-based load balancing

scheme is evaluated under faults [14, 13] (see figure 4). The load-balancing software that makes

task placement decisions and maintains the database is actually executed within the DEPEND

environment upon a simulated distributed system. DEPEND's fault injection facilities are used

to inject communication faults which destroy and corrupt fields of the status messages sent to the

CPU maintaining the database. Faults are also injected into the CPU containing the load-balancing

software, to erase its database. The effect of all these faults is to corrupt the database and impair

the placement decisions made by the load balancing software.

If a purely probabilistic modeling tool were used for this study, the user would have to pre-

specify:

• the probability that a fault will corrupt the database,

• how each fault will corrupt the database, and

• which portions of the database will be corrupted

Fail Nodes
TalkJ arrive _kl _c_atmd on all _em.

\ //

Job plac_nt measageJ

-Jl
Corrupt or destroy status messages

Figure 4: Distributed system executing load balancing software.

and would have to quantify:

• the extent of corruption and

• how each corruption will impair the placement decision made by the load-balancing software.

Needless to say, these factors are extremely difficult to obtain without a thorough prior fault

injection study. Because DEPEND executes the actual software, these parameters are the results

of (and not inputs to) the fault-injection experiment. Only the fault arrival rates and the types of

faults injected need to be specified. Thus, DEPEND can identify the failure mechanisms, obtain

failure probabilities, and quantize the effect of faults. It can be used to pick out the key features
that must be modeled and help to determine and specify both the structure of, and the parameters

to analytical models.

A single distinguishing feature between probabilistic modeling and behaviorM modeling is

brought out by one of the results of this study (details of all the results can be found in [13]).

The study helped to uncover a design feature of the software that caused erratic increases in sys-

tem response time only when status messages were destroyed. Once the software was modified, the
erratic increase in response time ceased. Not only are such studies beyond the range of analytical

• tools, to the authors' knowledge, this experiment would be difficult to conduct with many current

software fault injection tools.

5.2 Modeling Real Fault Scenarios

DEPEND uses a combination of behavioral and probabilistic modeling to simulate many realistic

fault scenarios. In this subsection, a simple example is used to illustrate how DEPEND models

latent errors that can substantially degrade system reliability. Latent errors can remain undetected

in a system for long periods of time and are a potential hazard [6]. A measurement study of a VAX

11/780 [5] has shown the mean latency of an error can be in the order of minutes (tt = 44rain.,

a = 29rain.) during peak hours and to several hours (11 = 8hrs., _ = 4hrs.) during off-times.

Modeling latent errors is difficult with Markov models for several reasons. First, the state space
of the Markov model can be large, even for small systems, if each latent error and its location

10

within a componentis represented.Second,simplifyingassumptionssuchas independentrepair
processesmust be eliminatedin order to accuratelyevaluatethe impact of latent errors. For

(] _)_£elecf systemor applicationspace

Get latencyfor I I Getlatencyfor

applicationspace I I systemspace

robal_lis#cbranch

oneof3 CPUs

dormantuntil _._ I Loce_on
latenCYexpiresb'meorrepair I_ I Latency

process detects L-I'J................ I Timeinjected
it _ _ vIPotenti,IactJva_ontim,

Errorsactivated...

Figure 5: The error injection process that models error latency.

example, in a self-repairing system like the Tandem TMR-based prototype (detailed description

can be found in section 6.1), the healthy processors reconfigure or repair a failed processor. If

latent errors are detected in the healthy processors during a repair, the system fails. Modeling this

inter-component dependence typically requires that the entire CTMC, its failure and repair process,

be evaluated together, thus potentially leading to large, stiff models. In [10], the authors present

a novel decomposition technique to avoid such large, stiff models. With their approach, the repair

coverage is evaluated in isolation and then 'adjusted' to account for the probability of a second,

independent error in another component. The example below extends this analysis to also evaluate

the impact of near-coincident errors due to latent errors in a repairing CPU. This example also

models the inherent dependencies that exist among the system components.

1
_ro. [Another recovery]

J in progress? I
1

I Randomly pick CPU Ito perform recovery J

2
Latent error insystem space? I

Latent error in I
application space? -_"

7 Yu I
(i-y)

I . (l-_)

I Permanent error?. _ Reconfigure I

I"est°'ecPuI /

Eras

I errors in I
I restored I

I cPu_

Figure 6: The repair process that considers the state of the other CPUs in the system.

Figure 5 illustrates how latent errors are injected into a system with three processors. DEPEND

uses a chronologically sorted queue to maintain the latent errors injected into the system. The

information associated with each latent error includes the time at which the error is injected, its

location (the component and memory address), and its latency period. Typically, the errors are

11

Description Value assigned

Error Arrival Rate,),l 0.01388
Repair Rate, # 30.0
Percent Transient error, v 0.99
Repair coverage,/3 0.98
Latent error in system space, _ 0.05
Latency for system space, exponential with mean 15.0
Latency for application space, exponential with means 1, 2, 4, 6 & 8
Prob. Failure due to latent errors in repairing CPU, "7 0.1

Table 2: The parameters used. All times are in hours.

detected when their latency period expires. However, the errors can be detected earlier by the

repair process. Fault injection experiments on the Tandem TMR-based prototype have shown

that latent errors in the repairing processor are detected with high probability during repair and

reconfiguration because much of the system is exercised during a repair. Figure 6 is a flowchart of

the repair process that models this phenomenon. It is invoked each time a latent error is activated.

Note that the repair process models near-coincident errors caused by a second, independent error

in another processor (box 1). The dynamic determination of the repair coverage which depend on

whether there are latent errors in the repairing processor is shown in boxes 2 and 3. To reiterate,

by storing latent errors in a queue, DEPEND can dynamically model the actual activation time

of latent errors which is dependent on: 1) the component the error is located in, 2) the location

within a component, 3) the failure rate of the components in the system, and 4) the system's repair
scheme.

The example is evaluated under three different conditions. First, permanent and transient errors

with no latency are injected (M1). Second, near-coincident errors due to a second, independent

error in another processor is modeled but error latency is not considered (M2). The decomposition

technique in [10] model this second condition. Third, the simulation model described above is
evaluated. It includes the conditions in M2, and it also considers near-coincident errors caused by

latent errors (M3). The specific parameters of the models are listed in table 2. Figure 7 shows
a 33% decrease in MTTF when latent errors and their impact on system reliability is taken into

account. The result emphasizes the importance of modeling real phenomenon such as latency, and

it demonstrates that by so doing, more precise evaluation of fault tolerant mechanisms and repair

schemes are possible. Later, in section 8.2, the "staggered machine failure" phenomenon found to

be caused by correlated errors [46] is mimicked by injecting correlated errors with different latency
times. This more faithful model is found to produce MTTF figures that are an order of magnitude

larger than those produced with traditional models that assume correlated errors are detected

simultaneously.

5.3 Discussion

These examples illustrate the benefits of the DEPEND environment. The combined fault injection

and simulation facility allow accurate modeling of real fault scenarios, repair schemes and the

impact of software on system dependability. For these reasons, DEPEND is ideally suited for the

12

M
T
T
F

1200- "

1100 -

1000 -

900 -

800 -

7OO
0

..... basic (M1)

-- near-coincident (M2)

near-coincident & latency (M3)

I I I I I

2 4 6 8 10

Mean Latency (hrs.)

Figure 7: Comparison of system MTTF for the three models.

second stage of a design process when detailed evaluation of a system is necessary to ascertain

that dependability specifications are being met. In addition, DEPEND can supplement existing

analytical tools by determining fault mechanisms, identifying important fault conditions that must

be considered, determining the appropriate analytical models to use, and providing parameter

values for them.

6 A Case Study to Illustrate DEPEND

This section illustrates the capabilities of DEPEND with a simulation-based fault injection study

of a Tandem TMR-based prototype fault tolerant computer system. This system has been shown

to be very effective against single faults. An important question is how such a system copes with

near-coincident faults generally caused by correlated failures and latent faults. Architectural issues

that have a bearing on how the system handles near-coincident errors include memory scrubbing,

re-integration policies and workload dependent repair times. To study these issues, DEPEND was

used to simulate the TMR-based system and evaluate the combined effect of all these factors. The

salient features of the target system are described below, followed by subsections that describe the
simulation model.

6.1 The Tandem TMR-based Prototype Fault-Tolerant System

The Tandem TMR-based fault-tolerant system [25] is shown in figure 8. In the prototype, each

CPU was a MIPS R3000 RISC processor with an on-chip virtual memory mechanism and a separate

clock. The processors execute the same instruction stream simultaneously. The processors are

synchronized and their requests are checked by the voter when global memory is accessed, I/O

is performed, or 2047 cycles have elapsed. If there is a discrepancy during voting, the processor

in disagreement is shut down. The faulty processor performs a power-on self-test (POST), and

if successful, the system is halted and the contents of the good processors are copied to it. The

POST takes approximately 70 seconds and the re-integration takes approximately 2.0 seconds for

a system with 8 Mbytes of local memory.

13

CPU

Local
Memory

i I CPU
Local

Memory

voter

TMRC

Global
Memory

I

t voterTMRC

I GlobalMemory

I
I I
lOP I

cPu I

Local IMemory

I

RSB

I
I RIOB

II
[I

1 Controller I

t Contro.e,I

Mirrore_
Disks

Figure 8: The Tandem TMR-based prototype processing subsystem.

The local memories in the target system did not have parity or ECC circuitry. The system relies

on memory scrubbing to correct transient memory errors. The TMRC contains the voter and up

to 128MB of global memory. The primary function of the TMRC is to vote upon the transactions

sent by the CPUs. The global memories are protected by parity. When a parity error is detected by

the TMRC, the backup memory takes over. A global memory is re-integrated in the background,

interleaved with ordinary processing. The re-integration time is load dependent. Table 3 contains

the measured re-integration times from a system with 32MB of global memory. Global memory

re-integration has lower priority than CPU re-integration and is aborted and restarted in case of a

CPU re-integration.

Percent of Time Re-integration

CPU is Idle Time

99% 30 sec.

59% 2 min. 25 sec.

37% 3 min. 46 sec.

27% 4 min. and 5 sec.

16% 4 min. and 40 sec.

0% 5 min. and 29 sec.

Table 3: Global memory re-integration times with varying machine idle percentages.

14

6.2 The Simulation Model Developed with DEPEND

Recallthat weareinterestedin evaluatingthe TandemTMR-basedprototypesystemandseveral
of its architecturalfeaturesunderthestressof near-coincidenterrors.To achievethis, severalkey
characteristicsof the Tandemsystemweresimulated.Theseinclude:

• the loosesynchronizationpolicyof the system(thefact that the processorsidle at the voters
to synchronize,andthe exacttime neededby thevoting operation),

• the CPU (with its local memory) and the global memory structure that is unique to the

Tandem system,

• the functional behavior of the error-detection mechanisms of the CPU and global memory

structure,

• the CPU off-line POST and the on-line re-integration process and the global memory back-

ground re-integration process that are unique to the Tandem system, and

• the behavior of the Tandem system when a CPU and global memory re-integration occurs

simultaneously (prioritized re-integration).

These details of the system architecture and how it reacts to faults were determined by studying its

layouts, descriptions and manuals, discussing the matter with its designers and conducting several

fault injection studies (in addition to the validation experiments mentioned below). Simultaneous

injections into various components of the system helped to uncover interesting characteristics of

the system that were subsequently incorporated into the simulation model.

The simulation model for the Tandem system, developed with DEPEND, is shown in figure 9.

The blocks on the right are the DEPEND objects used in the simulation model. The block on the

left summarizes the program written to create the simulation model and control the operations of

each of the components.

The NMR object in the DEPEND library is the primary object used in the simulation.

The NMR object simulates dual self-checking, triple-modular redundant and N-modular redundant

systems. The servers idle until they receive a task to process. They then execute for a specified

time period and feed their results to the voter. The voter waits for all the servers and then executes

a voting algorithm. A timeout condition is used to prevent hanging in cases where a server fails to

report to the voter. The NMR object provides two voting algorithms: bit stream voting and error-

based voting. The bit stream voting scheme performs a bit by bit comparison of the data deposited

by the servers. The error-based algorithm flags a server's result as being faulty if an error has

been injected into the server. This option was used in this simulation because the processors were

not given real data to process. The NMR shuts down the servers with faulty results. Automatic

repair schemes are not provided, but functions can be called to repair the individual servers. This
feature was used to simulate the automatic re-integration feature of the Tandem system. The NMR

object's fault injector injects latent and correlated errors.

15

Control Program

Initialize objects - specify parameters

set exponential injection

specify error arrival rates

specify re-integration times

specify number of servers in each TMR

etc.

Start each object

loop until done:

do 2047 instructions

wait for voting to complete

if faulty processor initiate POST

call global memory's error based
voter

II if faulty global memory initiate
reintegration

if any subsystem has failed
reboot the system

if processor ready for re-integration
halt system and re-integrate

fast forward to next event

end loop

1 i

DEPEND objects

run 2047 cycles _M_

do POST '1 Processing Core

, fault inJactor!

ra-intagrate j
--a

reheat J

fault or fail

signal
i

voting complete
signal

error based

voting

reheat

re-integrate

fault or fall

signal

i

V . v . V

iJerver aerver 8er'v'qJE

1 2 3

VOICE

....m_

NMR

1
|

-- 1
i

' I
k

|

- !
_m'm_I_u_o_m_8_w_uN_m#_mo_au_N_mN_m_mMmH_m_i_muNm_m_m_m_

IlmmmmmmmmlalmmllllmtmllulmmlumlulmmlunllullmUmlUlmUlmmmml|lmlBl_lMmlmmlmm|lm_

Global Memory
NMR

fault: injector

lleZml_'er 8Oz'weE

1 2

VOteE

r

e

,4-- p
a

i

r

i

Figure 9: The simulation model of the Tandem TMR-based system developed with DEPEND.

The processing core of the TMR-based system is simulated with a NMR object containing

3 servers. Each server simulates a processor board containing a CPU and a local memory. The

NMR's injector is used to inject errors into both the processor and the local memory.

The two global memory boards are simulated with a NMR with 2 servers. Every 2047 cycles,

when the processors synchronize, the global memory's error-based voting function is explicitly

invoked by the control program to check each server and shut down any that has an active error.

This simulates the actual operation of the system because parity errors in the global memory are

detected when the processors synchronize at the voter to access global memory.

The control program in figure 9 is the only part that is written by the user. It declares

instances of the two DEPEND objects and initializes and customizes them. Initialization consists

of specifying the error arrival distribution, the error arrival rate, the error latency distribution and

so on. Then each object is "started" causing them to automatically perform tasks based on the

parameters specified. All actions are automatically logged and the user can call functions to obtain

a detailed report of every fault or repair. In addition, statistics such as availability, MTBF, the

number of faults injected, the mean time between repair and the repair coverage are available.

16

Thecontrolprogramsimulatestheexecutionof 2047instructionsandthevotingprocess.If any
detectableerrorsarefoundin anyof the componentsduringvoting,the componentsareshutdown.
Thestatusof thesystemis checkedto determinewhetherit hasfailed(i.e. two CPUsor bothglobal
memoryboardshavefailed). If the systemhasfailed,it is rebootedandthe simulationrestarts. If
the systemhasnot failed, a backgroundre-integrationprocessis startedfor any componentthat
wasshutdownearlierby the voter. Finally, the control programchecksto seeif re-integrations
initiated in anearliercyclehascompleted.If so,they arehandledbasedon the componenttype
(CPU or globalmemory)asdescribedin the previoussection.Thoughnot shownin figure9, the
memoryscrubbingprocessis alsosimulated.Although the simulationcanproducemany results,
theonewearemostconcernedwith is the meantime betweensystemfailures(MTBF).

6.3 The Error Occurrence Process and Experiment Design

The simulation models errors in the storage elements (e.g. registers and memory) of the system.

These errors are assumed to be caused by transient faults such as ionization radiation and are

assumed to manifest as a single bit flip that can be detected by the voter if it is in the processor

board, or detected by the parity error coding scheme if it is in the global memory. Compensating

second errors to the same bit are not considered because it is a very rare event.

The TMR's fault injector is used to inject active, latent and correlated errors. Active errors are

detected within 2047 cycles from the time they are injected. Latent errors may remain dormant for

hours before being detected. As a result, a component may have several latent errors. This models

the phenomenon observed when errors were injected into the target system; errors injected into

the section of a local memory containing the exception handler, the TLB (Translation Lookaside

Buffer) miss handler or the processor register space were usually detected immediately whereas

errors injected into other locations in the local or global memories had a much larger latency. A

correlated error is two or more errors injected simultaneously into two or more components of a

subsystem. Each correlated error is either active or latent. Correlated errors with different latencies

is justifiable because there is a high probability that the errors will not occur in the same location

in each component and hence will produce different latencies. Furthermore, measurement studies

[43, 46] show that correlated errors do not occur simultaneously as it is typically modeled with

analytical tools.

The complete error occurrence process for just two CPUs is illustrated in figure 10. A similar

process is used to inject errors into the global memory with one exception; only latent errors are

injected. The error arrival times are exponentially distributed. When an error is injected, a proba-

bilistic branch is used to determine whether it is a correlated error affecting 2 or more components

in a subsystem, or a single error. A probabilistic branch is also used to determine whether the error

is active or latent. Eventually, the error is detected by the voter and the component is shutdown

and then re-integrated.

6.3.1 Simulating error latency

DEPEND provides a simulation-based software model that can evaluate the error behavior of

programs caused by hardware faults [17]. This model can be used to obtain application dependent

measurements such as error detection latency times. However, in this study, latency distributions

17

Figure10: Theerroroccurrenceprocesssimulatedwith DEPEND.

from a measurementstudy(seesection5.2)areused.Whenthe NMR object injectsa latenterror,
it determinesits latencyfrom thesedistributions.The NMR object usesthe schemedescribedin
section5.2to modellatenterrors.This approachprovidesenormoussimulationspeedup because
the time at whichthe next latenterror will becomedetectableis knownapriori thus eliminating

the need to simulate the system between occurrences of detectable errors. The time acceleration

algorithm described in section 4.3 takes advantage of this property.

6.3.2 Assumptions and parameters used in the simulations

Error arrival times are exponentially distributed. The distribution means are based on measure-

ments of real error data collected from a DEC VAXcluster multicomputer system[42]. The mean

time between CPU errors (1/)_cPu) in the system was 265.8 hours with a standard deviation of

497.6 hours. The mean time between memory errors (1/,kMemory) was 27.0 hours with a standard

deviation of 150.4 hours. The combined error arrival rate is approximately 1 error every 24 hours.

Of this combined rate, approximately 62% of the errors are injected into the global memory and

38% are injected into the processor board containing the CPUs and the local memories. These

numbers are based on the size of the memories (8Mbytes of local memory per board and 32Mbytes

of global memory per board) and the contribution of the CPU error arrival rate to the combined
error arrival rate. The voter is assumed to be error free. To compensate for the fact that the

measurements are from a larger system, three combined error arrival rates (shown in table 4) are

18

usedin the simulations.Still, onecannotassertthat the errorrate of the target systemis similar
to that of the VAX cluster,but sincethe focusof this study is on relativetrendsand changesto
systemreliability andnot absoluteMTBF figures,this doesnot posea problem.

Theerror latenciesusedin thisstudyareapproximatedby normaldistributionswith themeans
and standarddeviationsfrom the measurementstudy in [5]. A larger latencywith a meanof 36
hoursand a standarddeviationof 18hoursis alsousedin the simulationsto determinethe effect
of extremelylargelatencies.

All errors,includingundetectedlatenterrors,residingin aprocessoror in a globalmemoryare
assumedto becorrectedwhenthecomponentundergoesare-integration,thesystemis rebooted,or
whenscrubbingtakesplace.Thus,notall theerrorsinjectedaredetectedandtheactualerrorarrival
distribution of detected errors depends on the scrubbing rate, the component re-integration rate,

the error latency and the injection rate. Because error latencies and global memory re-integration

times are workload dependent, various system workloads are implicitly modeled by varying these

parameters. Finally, since we are primarily concerned with transient errors, permanent errors are

not injected and the MTBFs presented do not reflect their impact on system reliability.

7 Validation of the Simulation Model

An important but often overlooked issue is how accurately simulation models represent the actual

system being studied. This section briefly describes the fault injection experiments that were
conducted on an actual Tandem machine to validate the basic simulation model developed with

DEPEND.

Figure 11 shows the hybrid monitoring environment used to conduct the experiments. A detailed

description of the environment can be found in [47, 16], and a description of all the experiments
conducted can be found in [16]. The hybrid environment takes advantage of the target system's

ability to re-integrate a failed component of a subsystem on-the-fly. The environment is automated

and can execute for days repeatedly injecting errors and collecting measurements. A Tektronix

DAS 9200 digital logic analyzer is used to monitor the bus activity on the CPU that is injected

with errors. A finite state machine is used to specify the data that is collected, such as the times

when an injection occurs, an exception is raised, and when POST is initiated.

A DAS control program running on a Sun workstation accepts start, stop and data upload

commands from the injection program, translates them, and relays them to the DAS. The injection

program runs on the Tandem TRM prototype machine and injects errors into the text region (the

region containing the machine instructions) of a process. Injecting an error consists of randomly

selecting a word, and randomly corrupting one bit of the word residing in the memory of CPUB. If
the word resides in the cache, it is deleted to ensure that the corrupted version of the word is used.

The target applications are Gaussian elimination programs which repeatedly generate 300-by-300
element matrices and execute the Gaussian elimination algorithm to solve the set of simultaneous

equations. Two instances of the program were executed simultaneously and injected with errors.

Figure 12 shows the injection program used to collect the time to CPU shutdown distribution

19

Injection -_
program & _)

target (

applications._]

Tandem

TMR

opu

DASProbe

socket connection

Tektronix DAS

9200 Logic
Analyzer

Finite machine

to control data
collection

SUN

DAS Control

program

RS-232

connection

Figure 11: An injection environment using hybrid monitoring.

and the number of undetected, latent errors present in the CPU board prior to a shutdown 2

These measured data are compared with those generated with the DEPEND simulation model.

An accelerated exponential injection rate with a mean of 3 minutes is used to ensure that enough

CPU shutdown events are collected for a meaningful comparison with the simulation results. The

1) Start the two Gaussian elimination workload programs.

2) Start the DAS controller and request it to start the DAS.

3) Randomly select

the program to inject
the address of the word to be corrupted

the mask to use.

4) Inform the DAS of the address of the word corrupted.

5) Inject the error into the word (flip a single bit).

6) Determine time of next error, t (exp()_ -= 3minutes)).

7) Wait for CPU shutdown or until t - whichever comes first.

8) If (CPU is shutdown before t elapses)

re-integrate the CPU

sleep until t elapses

9) Goto step 3.

Figure 12: Injection program used for the validation experiment.

experiment was conducted over a period of 28 hours, during which 414 errors were injected and the

CPU was shutdown 247 times.

The experiment is then repeated with the DEPEND model of the target system. The system

simulation was modified to only inject errors into one CPU. The model was executed for a simulated

time period of 500,000 seconds (5.78 days). Figure 13 shows the measured and simulated CPU

shutdown distributions and their means, medians, standard deviations and the sample counts. The

means, medians and the standard deviations are statistically identical. Comparing the distributions,

the general shape of both distributions is similar in spite of the fact that the measured distribution

has 5 times fewer samples. A closer look at the two distributions reveal that many of the peaks

in the measured distribution can also be found in the distribution obtained from simulation. For

2This is simply a count of the number of errors injected prior to a CPU shutdown. So if four errors axe injected

before a shutdown, it is assumed that there are three undetected errors in the CPU prior to a shutdown.

2O

F
r
e

q
U
e
n
c

Y

24l20

16

12

8

4

0

Mean: 381.84

Median: 291.0

Std. dev: 294.55

Count: 247

7O

6O

F 5O
r

e 40
q
u

e 30
n
e

Y 20

10

Mean: 383.29

Median: 301.94
Std. dev: 280.18
Count: 1304

0

320 640 960 1280 1600 0 320 640 960 1280 1600

a) Measured (sec.) b) Simulated (sec.)

Figure 13: The time to CPU shutdown distribution (in seconds).

example, the simulated distribution captures the peaks which occur between 640 and 960 seconds

and between 960 and 1280 seconds. Figure 14 contains the measured and simulated distributions

of the number of undetected, latent errors in the CPU at the time of a shutdown. The distribution

obtained from the simulation model tracks the one obtained from measurement very well. These

F
I?
e

q
U

e
n
c

Y

150 -

125 -

100 -

75-

50-

25-

0

Mean: 0.67

Std. dev: 0.97

Count: 247

234567

F
r
e

q
u
e
n
c

y

750 -

625 -

500 -

375 -

250 -

125

0

Mean: 0.73
Std. dev: 1.06
Count: 1304

234567

a) Measured b) Simulated

Figure 14: Distribution of the number of latent errors prior to a CPU shutdown.

results demonstrate that the simulation model of the Tandem system is valid and that DEPEND

is capable of capturing the intricacies of a real system.

21

8 Simulation-based Fault Injection Study

The DEPEND simulation model is used to analyze the behavior of the TMR-based system under

correlated and latent errors and with memory scrubbing and various re-integration times. The main

purpose is to illustrate the sorts of studies that can be conducted with DEPEND. The parameters

used in the simulation experiments are listed in Table 4. The experiments were conducted in phases

to isolate and determine the impact these various parameters have on system reliability. The results

shown here do not consider the degradation in recovery coverage due to latent errors. The system

was simulated for time periods ranging from 30 years to 2000 years. Each simulation was run twenty

times with different random seeds and the averages of these repeated executions are shown here.

Except where explicitly stated, the simulations were executed with a POST time of 60 seconds, a

Error Arrival Rate)_1 1/24 hrs
Error Arrival Rate)_2 1/72 hrs

Error Arrival Rate)_3 1/120 hrs

Small Latency (SL) # -- 44 rain., a = 29 min.
Large Latency (LL) # = 8 hrs., a = 4 hrs.
Extra Large Latency (XL) _ = 36 hrs., a -- 18 hrs.
Percent Correlated Errors 0, i, 2
Percent Latent errors 85

POST Time 1, 10, 30, 60 sec.

CPU Re-integration 1.5 sec.
Global Mem. Re-integration 0.5, 2, 5, 10 min.

System Reboot t_me 10 min.

Table 4: Simulation parameters.

global memory re-integration time of 2 minutes and with memory scrubbing turned off. The mean

time between failures (MTBF) is calculated by dividing the simulation period by the average number

of system failures. The MTBF figures presented in this paper should not be construed to reflect

the MTBF figures of an actual Tandem TMR-based prototype system because the error arrival

rate and the error latency, which have a direct bearing on this measure, were not obtained from

measurements of the Tandem TMR-based prototype but rather from other production machines.

For this reason, the results should only be construed to reflect the general trend and behavior of a

TMR-based system that is similar to the Tandem system.

8.1 Impact of Correlated Errors

TMR-based systems have been shown to be extremely effective against single, independent errors.

In this experiment, active, correlated errors are injected to determine their impact on system reli-

ability. The modeling is similar to the 'partial coverage' technique commonly used with analytical

models. Correlation factors of 0, 1 and 2 percent were used. Figure 15 shows the results for er-

ror arrival rates A1 and A2 for various global memory re-integration times. The figure shows that

even a small fraction of correlated errors produces orders of magnitude reduction in the MTBF.

However, measurement studies [43, 46] show that correlated failures do not occur simultaneously

as modeled here. The next subsection models the occurrence of correlated errors more realistically

22

and as observed in measurement studies.

a) Active Errors, At arrival rate b) Active Errors, As arrival rate

M

T
B

F

Y
r

s

25 180

-- 30 sec. 160

20 2 min. 140
M

15 _ 5 min. T 120B I0010 min. F

10 y 80
r

s 60

5 40

20

0 , i 0
0 1 2

\\\\

0 1

-- 30 sec.

2 min.

5 min.

.... 10 rain.

Percent Correlation Percent Correlation

Figure 15: Active errors (no latency) with various global memory re-int, times

The figure also illustrates the degradation in reliability caused by increasing the global memory's

re-integration times. A ten fold increase in the re-integration time (from 30 seconds to 5 minutes)

reduced the MTBF by a factor of 5 for A2, and a factor of 7 for A1. As the error arrival rate

decreases, the impact of the re-integration times will become less of a factor. However, since the

re-integration time is dependent upon the size of the memory, the system reliability will decrease

as memory size increases; the decrease will be more than linear because the larger memory will also

increase the error arrival rate.

The performance overhead for voting was measured during the experiments and was found to be

3.36% with the assumptions that the processors only vote every 2047 cycles and that they all arrive

at the voter at the same time. This is the minimum voting overhead because in actual operation,

the CPUs are likely to vote more often (i.e., they vote whenever they access global memory or

perform I/O) and they will typically never reach the voter at the same time, leaving the early

comers to idle waiting for the slowest processor.

8.2 Impact of Latent, Correlated Errors

Correlated errors with latency are used to mimic the phenomenon of "staggered machine failures"

found to be caused by correlated errors [46]. All errors injected into the global memory are latent;

85% of the errors injected in the CPU boards are latent and the remaining 15% are active errors.

Figure 16 graphs the change in the MTBF for error arrival rates of A1 and A2. There are three things

worth noting. First, the order of magnitude degradation in system MTBF, due to correlated errors

seen in the previous subsection, is not as apparent when a more realistic model is used. Though

the reduction in MTBF is significant, a 5-fold decrease for A2 with 1% correlated errors and small

latency (SL), it is substantially smaller than the exaggerated 80-fold degradation obtained when

error latency is not considered. Second, figure 17 shows the increase in the number of failures for

23

M
T
B
F
Y
r

s

16

14

12

10

8

6

4

2

0

a) Error arrival rate 3,1

-- NO 80

" LL 70
\, XL

" 60
\ M

. T 50

_ _ \, F 40

-"_ Y 30

--... .. "X---........ -'-N s

.. x... 20
X

-- - -x i0

, ¥ 0
0 1 2

Percent Correlation

b) ErrorarrivalrateA2

-_\\ LL

T, "_x', ,, X L

-

-
0 1 2

Percent Correlation

Figure 16: Latent correlated errors, Mem. re-int = 2 min., Scrubbing off.

the different correlation factors. It reveals that as the size of the latency increases, the impact of

correlated errors diminishes. This still holds for the processors where 15% of the errors injected

are active errors. It should be noted, however, that this finding is based on the assumption that

re-integration coverage is 100%. Figure 16 also shows that there is a slight degradation in MTBF

when small latent errors are injected versus the case where only active errors axe injected.

a) Num. Global Memory Failures, 3,, b) Num. ProcessorFailures,3,i

_

7

6

F 5
i
1 4
U

r

e 3
S

2

0

__ SL F
a

i
l
U

_-n -xLL r
_ _ _ e

_" _ s

............ x x XL

{ I

0 1 2

Percent Correlation

SL

.ix LL

1. t" j

......... x XL

¢ = +

I I

0 1 2

Percent Correlation

Figure 17: Number of processor subsystem and global memory subsystem failures. No scrubbing.

24

Scrub

Interval SL

7.69 10.39

1 52.63 > 2000.0

4 11.43 666.66

8 9.48 142.86

24 8.73 16.39

Latency
LL XL

15.69

> 2000.0

> 2000.0

510.5

489.3

Table 5: Results with scrubbing activated. POST = 60s. Global Mem. Re-int. -- 2 min.

8.3 Impact of Memory Scrubbing

In this experiment, memory scrubbing is activated to see how well it protects the system from

correlated, latent errors. Four scrubbing intervals, 1 hour, 4 hours, 8 hours and 24 hours, are

used. Table 5 shows the impact of scrubbing on the system MTBF for error arrival rate A1. The

case where scrubbing is not activated is included for comparison purposes. The table shows that

frequent, hourly scrubbing is necessary for small latencies. For SL, hourly scrubbing increases the

MTBF by nearly 7 times. When the scrubbing interval is increased to once in 4 hours, their is a

corresponding decrease in the MTBF. Scrubbing once every 8 hours provides good results for the

larger latencies. Identical trends were seen for error arrival rates A1 and A2 and tend to indicate
that the dominant factor that should determine the scrubbing period is the size of the expected

latency and not on the error arrival rate. Here again there is a performance/reliability tradeoff

because latency decreases with increasing workloa_l and that is precisely when frequent scrubbing

is required. Fortunately, the overhead for hourly scrubbing is only 0.34% and is not significant.

Table 6 clearly indicates that any improvement in system reliability provided by scrubbing is

diminished if there is correlated errors. For example, with 1% correlated, small latent errors, the

MTBF falls from 52.63 years to 8.4 years. Though scrubbing is not effective against correlated

errors, the experiments revealed that it still tends to decrease the number of near-coincident faults

and increase the availability of the individual components.

Latency

SL

LL

XL

Percent Correlation

0 1 2

52.63 8.40 4.29

> 2000.0 15.92 8.74

> 2000.0 19.39 9.33

Table 6: Impact of correlated, latent errors on scrubbing. POST = 60s. Global Mem. Re-int. = 2

min.

25

M
T
B
F

Y
r

s

a) CPU POST -VS- Mem. Re-int. b) Impact of Correlation

5O

4O

3O

2O

10

I sec.

\ 10 see.

_/ 30 sec.

!t 60 sec.

I I I

M
T
B
F
Y
r

s

50-
1 sec.

10 see.40

\ " 30 sec.

.-,\
20

0 _ i

0.5 2 5 10 0 1 2

Global Mem. Re-integration (min.) Percent Correlation, Global Mem. Reint (0.5min)

Figure 18: System reliability for various subsystem re-integration times.

8.4 Impact of POST Time

The system simulated is designed to tolerate single faults. For such systems, the time needed to

repair a faulty component is referred to as its window of vulnerability. If a second fault arrives

within this window, the system will fail. The previous experiments show that the MTBF of the

system is quite sensitive to the size of this window. The CPU re-integration time consists of 60

seconds to perform a power-on self-test (POST) and 1.5 seconds to re-integrate the CPU. The

re-integration time cannot be easily reduced but the POST time can be cut by using different self-

checking programs. Since most errors are caused by transient faults, reliability can be improved by

performing a perfunctory check that takes a few seconds and immediately initiating a re-integration.
If another error is detected in the same board shortly thereafter, a more thorough POST program

can be executed to check for permanent defects. The re-integration time for the global memory

varies with workload, but it can be reduced by increasing the priority of the re-integration process.

In this experiment, simulations are conducted with various POST times and global memory re-

integration times to determine which of these repair times have the greatest impact on system

MTBF. Specifically, POST times of 1, 10, 30 and 60 seconds and the global memory re-integrations
times listed in table 4 are used in the simulations. Memory scrubbing was not activated.

Figure 18a plots the MTBF figures for the various POST times for small latent errors with error

arrival rate)_1- With a 30 second global memory re-integration time, reducing the POST time from

60 seconds to 1 second improves the MTBF from approximately 20 years to 50 years. However,

when the global memory re-integration time is increased to 2 minutes, reducing POST times has

no effect on system MTBF. According to table 3, global memory re-integration time for a 32Mbyte

system is 2 minutes when the system is working at half capacity. Clearly, given the assumption

that 62% 3 of all errors are injected into the global memory, the "reliability bottleneck" is the large

3This number was determined based on the size of the global memory and the CPU local memories. See section
6.3.2.

26

re-integrationtime of the global memory.Rather than trying to reduceCPU POSTtimes, the
designersshouldfocustheir effortson reducingglobalmemoryre-integrationtimes.

The resultsof simulationswherecorrelatederrorsare injectedare shownin figure 18b. For
thesesimulations,the globalmemory'sre-integrationtime waskept fixed at 30seconds.Again,
in this experimentweseethat the presenceof correlatederrorsdiminishesanygainsachievedby
reducingthe CPUPOSTtimes.

9 Conclusion

The objectives of this paper were to: 1) motivate the need for functional simulation tools and in

particular the integrated fault injection and simulation environment of DEPEND for system level

dependability analysis, 2) discuss the issues and problems of developing such general-purpose tools,

3) describe the DEPEND tool and present techniques developed to simulate real fault scenarios and

reduce simulation time explosion, and 4) illustrate a few of DEPEND's capabilities via a realistic

evaluation of the Tandem TMR-based prototype fault-tolerant system.

DEPEND is an integrated design and fault injection environment. It is a functional, process-

based simulation tool. The system behavior is described by a collection of processes that interact

with one another. DEPEND exploits the properties of the object-oriented paradigm to tackle the

large component and fault model domain which is an integral part of system level analysis. Us-

ing decomposition, composition, parameterization and inheritance, DEPEND provides the skeletal

foundation necessary to model an architecture and conduct simulated fault-injection experiments.

A library of objects is provided to reduce the development time and effort needed to build simu-

lation models. Acceleration techniques, such as hierarchical simulation and time acceleration, are

provided to address simulation time explosion problems.

Examples were used to show why DEPEND is ideally suited for the second stage of the design

cycle of a system where specific repair schemes, detailed fault scenarios such as latent errors,

and software behavior due to hardware faults need to be evaluated. Through these examples,

DEPEND was shown to be able to determine failure mechanisms, quantize the impact of faults,

identify important failure conditions, and accurately evaluate fault tolerance mechanisms and repair

schemes. For these reasons, DEPEND can also be used to pick out the key features that impact

system reliability and help to specify analytical models for further system evaluations.

A few capabilities of DEPEND were illustrated by analyzing a Tandem TMR-based prototype

fault-tolerant system. The effect of near-coincident errors caused by correlated and latent faults

was analyzed. Issues such as memory scrubbing, re-integration policies and workload dependent

repair times, which affect how the system handles near-coincident errors were also evaluated. Si-

multaneous, correlated errors were injected in the same fashion used as analytical models. Results

showed an exaggerated degradation in system MTBF. Error latency was introduced to more ac-

curately model the staggered failure effect of correlated errors observed in real systems. Though

the reduction in MTBF was still significant with latent, correlated errors, the degradation was

not in the order of magnitude seen with the simpler model. Hourly memory scrubbing was found

to be very effective for latent errors but proved ineffective against correlated, latent errors. The

27

scrubbingrate wasfound to bemoresensitiveto the latencyperiodthan the error arrival rates.
Finally, evaluationof the impactof CPU andglobal memoryre-integrationtimesshowedthat if
the machineis workingat half capacity,the global memoryre-integrationtime is the reliability
bottleneck.Designersshouldtry to reducethis time rather thanCPUre-integrationtimes.

An important but oftenoverlookedissueis howaccuratelya modelrepresentsthesystemunder
study. Resultsobtainedusingthe DEPENDsimulationmodelwerevalidatedby comparingthem
with measurementsobtainedfrom fault injectionexperimentsconductedon a prototype Tandem
system.A hybridmonitoringtestbedwasusedto conductthe injectionexperiments.The resultsof
thevalidationexperimentsdemonstratedthat DEPENDiscapableof capturingthe intricaciesof a
real system.To our knowledge,noothersimulation-baseddependabilitystudy hasbeenvalidated
in sucha fashion.

10 Acknowledgments

This work would not have been possible without the help of Doug Jewett, Bob Horst and Carlos

Alonso who have furnished many of the details of the Tandem system and have given useful feedback

about DEPEND and the Tandem simulation. The authors would like to thank In-hwan Lee, Dong

Tang, Axel Hein, Mark Boyd, and Fran Baker for their valuable suggestions regarding this paper.

References

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martins, and D. Powell,

"Fault Injection for Dependability Validation: A Methodology and Some Applications," IEEE

Trans. on Software Engineering, Vol. 16, No. 2, Feb. 1990, pp. 166-182.

[2] S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothman, W. E. Smith, "Analysis of Typical

Fault-Tolerant Architectures Using HARP," IEEE Trans. on Reliability, Vol. R-36, No. 2, June

1987, pp. 176-185.

[3] J. Carreira, H. Madeira, and J. Gabriel Silva, "Xception: Software Fault Injection and Mon-

itoring in Processor Functional Units," Proc. 5th Int. Working Conference on Dependable

Computing for Critical Applications, Urbana, IL, Sept. 1995, pp. 135-149.

[4] X. Castillo and D. Siewiorek, "A Workload Dependent Software Reliability Prediction Model,"

12th Int. Syrup. on Fault-Tolerant Computing, Santa Monica, June 1982.

[5] R. Chillarege and R. K. Iyer, "Measurement-Based Analysis of Error Latency," IEEE Trans.

on Computers, Vol. C-36, No. 5, May 1987.

[6] R. Chillarege, "Understanding Large System Failures--A Fault Injection Experiment," 19th

Int. Syrup. on Fault-Tolerant Computing, Chicago, Illinois, June 1989, pp. 356-363.

[7] G. Ciardo, J. Muppala, and K. Trivedi, "SPNP: Stochastic Petri Net Package," Int. Conf. on

Petri Nets and Performance Models, Kyoto, Japan, Dec. 1989.

28

[8] J.A. Clark and D. K. Pradhan,"A SimulatedFault-InjectionTestbedfor Alternative TMR
Architectures,"Tech. Report TR-92-CSE-1, U. of Massachusetts, Jan. 1992.

[9] P.J. Courtois, "Decomposability, Instabilities, and Saturation in Multiprogramming Systems,"

Comm. of the ACM, Vol. 18, No. 7, July 1975, pp. 371-377.

[10] J. B. Dugan and K. S. Trivedi, "Coverage Modeling for Dependability Analysis of Fault-

Tolerant Systems," IEEE Trans. on Computers, Vol. 38, No. 6, June 1989, pp. 775-787.

[11] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, "NEST: A Network Simulation and Proto-

typing Testbed," Communications of the ACM, Vol. 33, No. 10, Oct. 1990, pp. 64-74.

[12] R. Geist, K. Trivedi, "Reliability Estimation of Fault-Tolerant Systems: Tools and Tech-

niques," IEEE Computer, Vol. 23, No. 7, July 1990, pp. 52-61.

[13] K. K. Goswami and R. K. Iyer, "DEPEND: A Design Environment for Prediction and Evalu-

ation of System Dependability," 9th Digital Avionics Systems Conference, Oct. 15, 1990.

[14] K. K. Goswami, R. K. Iyer, and M. Devarakonda, "Prediction-Based Dynamic Load-Sharing

Heuristics," IEEE Trans. Parallel and Distributed Computing, Vol. 4, No. 6, June 1993, pp.

638-648.

[15] K. K. Goswami and R. K. Iyer, "Use of Hybrid a.nd Hierarchical Simulation t.o Reduce Com-

putation Costs," Int. Workshop Modeling Analysis _J Simulation of Computer _ Telecomm.

Sys., Jan. 1993, San Diego, CA, pp. 197-202.

[16] K. K. Goswami and R. K. Iyer, "DEPEND: A Simulating-Based Environment for System

Level Dependability Analysis," Technical Report CRHC-92-11, Coordinated Science Labora-

tory, University of Illinois, June 1992.

[17] K. K. Goswami and R. K. Iyer, "Simulation of Software Behavior Under Hardware Faults,"

Proc. 23rd Int. Syrup. Fault-Tolerant Computing, Toulouse, France, June 1993.

[18] S. Han, K. G. Shin, and H. A. Rosenberg, "DOCTOR: An Integrated SOftware Fault InjeC-

TiOn EnviRonment for Distributed Real-Time Systems," Proc. Int. Computer Performance

and Dependability Syrup., Erlangen, Germany, April 1995, pp. 204-213.

[19] H. Hecht and E. Fiorentino, "Reliability Assessment of Spacecraft Electronics," Proc. Annual

Reliability and Maintainability Syrup., 1987, pp. 341-346.

[20] M. C. Hsueh, R. K. Iyer, and K. S. Trivedi, "Performability Modeling Based on Real Data: A

Case Study," IEEE Trans. on Computing, Vol. 37, No. 4, April 1988.

[21] O. C. Ibe, R. C. Howe, and K. S. Trivedi, "Approximate Availability Analysis of VAXcluster

Systems," IEEE Trans. on Reliability, Vol. 38, No. 1, April 1989, pp. 146-152.

[22] IEEE Standard VHDL Language Reference Manual-Std 1076-1987, IEEE Press, 1988.

[23] R. K. Iyer, S. E. Butner, and E. J. McCluskey, "A Statistical Failure/Load Relationship:

Results of a Multicomputer Study," IEEE Trans. on Computers, Vol. SE-8, July 1982, pp.

354-370.

29

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

R. K. Iyer and D. Tang, "Experimental Analysis of Computer System Dependability," Tech-

nical Report CRHC-93-15, Coordinated Science Laboratory, University of Illinois, June 1993.

D. Jewett, "Integrity $2: A Fault-Tolerant Unix Platform," Proc. 21st Int. Symp. Fault-

Tolerant Computing, Montreal, June 1991.

A. M. Johnson and M. A. Schoenfelder, "Rainbow Net Analysis of VAXcluster System Avail-

ability," IEEE Trans. on Reliability, July 1991.

G. Kanawati, N. Kanawati, and J. Abraham, "FERRARI: A Tool for the Validation of System

Dependability Properties," Proc. 22nd Int. Syrup. Fault-Tolerant Computing, Boston, MA,

July 1992, pp. 336-344.

W. Kao and R. K. Iyer, "DEFINE: A Distributed Fault Injection and Monitoring Environ-

ment," Fault-Tolerant Parallel and Distributed Systems (D. K. Pradhan and D. R. Avresky,

Eds.), IEEE CS Press, Los Alamitos, CA, 1995, pp. 252-259.

H. Kobayashi, "Modeling and Analysis: An Introduction to System Performance Evaluation

Methodology Simulation Modeling and Analysis," Addison- Wesley Publishing Co., 1978.

E. E. Lewis, F. Boehm, C. Kirsch, B. P. Kelkhoff, "Monte Carlo Simulation of Complex System

Mission Reliability," Proc. Winter Simulation Conf., pp. 497-504, 1989.

M. H. MacDougall and J.S. McAlpine, "Computer Simulation with ASPOL," Syrup. on the

Simulation of Comp. Sys., ACM/SIGSIM, pp. 93-103, 1973.

B. Melamed and R.J.T. Morris, "Visual Simulation: The Performance Analysis Workstation,"

IEEE Computer, vol. 18, no. 8, pp. 87-94, Aug. 1985.

B. Meyer, "Object-oriented Software Construction," Prentice Hall International Series in

Computer Science,, 1988.

J. F. Meyer and L. Wei, "Influence of workload on error recovery in random access memories,"

IEEE Trans. on Computers, vol. C-37, no. 4, pp. 500-507, April 1988.

Victor F. Nicola, Marvin K. Nakayama, Philip Heidelberger, and Ambuj Goyal, "Fast Simula-

tion of Dependability Models with General Failure, Repair and Maintenance Processes," Proc.

of the 20st Inter. Syrup. on Fault-Tolerant Computing, England, June 1990.

R. A. Sahner and K. S. Trivedi, "Reliability Modeling Using SHARPE," IEEE Trans. Relia-

bility, Vol. R-36, No. 2, June 1987, pp. 186-193.

W. H. Sanders, W. D. Obal II, M. A. Qureshi, and F. K. Widjanarko, "The UltraSAN Modeling

Environment," Performance Evaluation, Vol. 24, No. 1, October-November 1995, pp. 89-115.

C.H. Sauer, E.A. MacNair, and J.F. Kurose, "RESQ: CMS User's Guide," IBM Research

Report RA-139, Yorktown Heights, N.Y., April 1982.

H. Schwetman, "CSIM: A C-Based Process-Oriented Simulation Language," Proc. Winter

Simulation Conf., 1986.

3O

[4o]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R. Dancey, A.

Robinson, and T. Lin, "FIAT--Fault Injection Based Automated Testing Environment," Proc.

18th Int. Syrup. Fault-Tolerant Computing, Tokyo, Japan, June 1988, pp. 102-107.

SES, Inc., "SES/Sim Simulation Language Reference Manual, " Austin, TX, March 1989.

D. Tang, R. K. Iyer, S. S. Subramani, "Failure Analysis and Modeling ofa VAXcluster System,"

Proc. 20th Int. Syrup. Fault-Tolerant Computing, England, June 1990.

D. Tang and R. K. Iyer, "Analysis and Modeling of Correlated Failures in Multicomputer

Systems," IEEE Trans. Computers, Vol. 42, No. 1, Jan. 1993.

K. S. Trivedi and R. M. Geist, "Decomposition in Reliability Analysis of Fault-Tolerant Sys-

tems," IEEE Trans. on Reliability, Vol. R-32, No. 5, Dec. 1983, pp. 463-468.

T. K. Tsai, R. K. Iyer, and D. Jewett, "An Approach towards Benchmarking of Fault-Tolerant

Commercial Systems," Proc. 26th Int. Syrup. Fault-Tolerant Computing, Sendai, Japan, June

1996, pp. 314-323.

A. S. Wein and A. Sathaye, "Validating Complex Computer System Availability Models,"

IEEE Trans. Reliability, Vol. 39, No. 4, Oct. 1990, pp. 468-479.

Luke Young, R. K. Iyer, K. K. Goswami and C. Alonso, "A Hybrid Monitor Assisted Fault

Injection Environment," Third IFIP Conf. on Dependable Computing for Critical Applications,

Sicily, Italy, Sept. 1992.

31

